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Abstract
Background  Stress hyperglycemia ratio (SHR) and glycemic variability (GV) reflect acute glucose elevation and 
fluctuations, which correlate with adverse outcomes in patients with atherosclerotic cardiovascular disease (ASCVD). 
However, the prognostic significance of combined SHR-GV evaluation for ASCVD mortality remains unclear. This study 
examines associations of SHR, GV, and their synergistic effects with mortality in patients with ASCVD across different 
glucose metabolic states, incorporating machine learning (ML) to identify critical risk factors influencing mortality.

Methods  Patients with ASCVD were screened in the Medical Information Mart for Intensive Care IV (MIMIC-IV) 
database and stratified into normal glucose regulation (NGR), pre-diabetes mellitus (Pre-DM), and diabetes mellitus 
(DM) groups based on glucose metabolic status. The primary endpoint was 28-day mortality, with 90-day mortality as 
the secondary outcome. SHR and GV levels were categorized into tertiles. Associations with mortality were analyzed 
using Kaplan-Meier(KM) curves, Cox proportional hazards models, restricted cubic splines (RCS), receiver operating 
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Research insights
What is currently known about this topic?

 	• The Stress Hyperglycemia Ratio (SHR) and Glycemic 
Variability (GV) quantify acute hyperglycemic 
responses and glucose fluctuations, respectively, 
which are pathophysiologically associated with 
adverse clinical outcomes in patients with 
Atherosclerotic Cardiovascular Disease (ASCVD). 
Patients across distinct glucose metabolic states may 
exhibit differential tolerance thresholds to glycemic 

instability, potentially modulating the prognostic 
significance of these glycemic parameters in 
heterogeneous populations.

What is the key research question?

 	• Does the combined assessment of SHR and GV 
confer superior predictive performance for adverse 
clinical outcomes in ASCVD patients across varying 
glucose metabolic statuses?

characteristic (ROC) curves, landmark analyses, and subgroup analyses. Five ML algorithms were employed for 
mortality risk prediction, with SHapley Additive exPlanations (SHAP) applied to identify critical predictors.

Results  A total of 2807 patients were included, with a median age of 71 years, and 58.78% were male. Overall, 483 
(23.14%) and 608 (29.13%) patients died within 28 and 90 days of ICU admission, respectively. In NGR and Pre-DM 
subgroups, combined SHR-GV assessment demonstrated superior predictive performance for 28-day mortality versus 
SHR alone [NGR: AUC 0.688 (0.636–0.739) vs. 0.623 (0.568–0.679), P = 0.028; Pre-DM: 0.712 (0.659–0.764) vs. 0.639 
(0.582–0.696), P = 0.102] and GV alone [NGR: 0.688 vs. 0.578 (0.524–0.633), P < 0.001; Pre-DM: 0.712 vs. 0.593 (0.524–
0.652), P < 0.001]. Consistent findings were observed for 90-day mortality prediction. However, in the DM subgroup, 
combined assessment improved prediction only for 90-day mortality vs. SHR alone [AUC 0.578 (0.541–0.616) vs. 0.560 
(0.520–0.599), P = 0.027], without significant advantages in other comparisons.

Conclusions  Combined SHR and GV assessment serves as a critical prognostic tool for ASCVD mortality, providing 
enhanced predictive accuracy compared to individual metrics, particularly in NGR and Pre-DM patients. This 
integrated approach could inform personalized glycemic management strategies, potentially improving clinical 
outcomes.

Graphic abstract 

Keywords  Atherosclerotic cardiovascular disease, Stress hyperglycemia ratio, Glycemic variability, MIMIC-IV database, 
Machine learning
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What is new?

 	• The combined assessment of SHR and GV 
demonstrated superior predictive accuracy for 
adverse outcomes in ASCVD patients compared to 
individual parameter evaluation, with this advantage 
being particularly pronounced in subgroups with 
Normal Glucose Regulation (NGR) and Pre-
Diabetes Mellitus (Pre-DM). Machine learning 
models significantly enhanced predictive utility and 
refined risk stratification, underscoring their clinical 
applicability in precision prognostication.

How might this study influence clinical practice?

 	• The study findings may inform personalized glycemic 
management strategies for patients with ASCVD, 
thereby potentially optimizing clinical outcomes 
through targeted metabolic intervention.

Introduction
Cardiovascular disease (CVD) remains the leading global 
cause of mortality and a major contributor to disability, 
accounting for 34.9% of worldwide deaths [1, 2]. Athero-
sclerotic cardiovascular disease (ASCVD), encompassing 
ischemic heart disease (IHD) and ischemic stroke, has 
emerged as a unified clinical entity within CVD classifi-
cations due to shared pathophysiological mechanisms, 
overlapping risk profiles, and common preventive strat-
egies [3, 4]. Notably, the ASCVD burden has escalated 
markedly in recent decades, contributing to approxi-
mately 61% of CVD-related mortality [5]. Furthermore, 
the heightened risk of adverse cardiovascular outcomes 
in diabetic populations underscores substantial heteroge-
neity in clinical manifestations across distinct glycometa-
bolic phenotypes [6, 7].

Stress hyperglycemia, defined as transient hyperglyce-
mia secondary to inflammatory and neurohormonal dys-
regulation, is prevalent in patients with acute myocardial 
infarction (AMI), stroke, and multiorgan failure [8]. Its 
pathogenesis involves complex interactions among sym-
pathetic nervous system activation, pro-inflammatory 
cytokine release, and hypothalamic-pituitary-adrenal axis 
hyperactivation [9]. However, admission blood glucose 
(ABG) levels may inadequately reflect acute hyperglyce-
mic status due to confounding by chronic glycemic expo-
sure [10]. Previous studies established a linear regression 
relationship between glycated hemoglobin (HbA1c) and 
average glucose (AG) levels, enabling the derivation of 
estimated average glucose (eAG) from HbA1c values 
[11]. The stress hyperglycemia ratio (SHR), derived from 
ABG and eAG levels, provides a quantitative measure of 
acute hyperglycemia relative to chronic glycemic control 
[12, 13]. Recent evidence demonstrates that elevated SHR 

independently predicts all-cause mortality in critically ill 
AMI and cerebrovascular disease patients, particularly 
in non-diabetic cohorts [14, 15]. Glycemic variability 
(GV), characterized by glucose fluctuations over defined 
intervals, serves as a marker of suboptimal glycemic con-
trol and elevated complication risks [16]. Notably, acute 
glucose excursions induce greater oxidative stress than 
sustained chronic hyperglycemia [17]. Emerging studies 
associate GV with adverse outcomes in diverse patholo-
gies, including heart failure, traumatic brain injury, and 
cardiovascular events [9, 18–20]. Consequently, com-
bined assessment of SHR and GV may optimize glycemic 
management and improve prognostication in critical care 
settings.

Current evidence reveals a mortality dichotomy 
between diabetic and non-diabetic populations, with 
attenuated risks of acute hyperglycemia observed in 
critically ill diabetic patients– a phenomenon poten-
tially mediated by chronic metabolic adaptation [7, 21]. 
However, prognostic implications of ASCVD stratified 
by glucose metabolism status during ICU hospitalization 
remain poorly characterized.

This study aims to evaluate the predictive utility of 
SHR, GV, and their integrated metrics for all-cause mor-
tality in ASCVD patients across glucose metabolic phe-
notypes, while developing machine learning (ML)-based 
mortality prediction models. Our findings may advance 
precision medicine by transitioning from uniform glyce-
mic targets to phenotype-driven management protocols 
tailored to distinct glycometabolic profiles.

Methods
Data source
This observational cohort study retrospectively analyzed 
clinical data from the Medical Information Mart for 
Intensive Care IV (MIMIC-IV v3.1) database, a publicly 
accessible repository containing comprehensive clinical 
records of over 190,000 patients and 450,000 hospitaliza-
tions recorded at Beth Israel Deaconess Medical Center 
(BIDMC), Boston, Massachusetts, United States, span-
ning 12 years from 2008 to 2019 [22]. The MIMIC-IV 
database deliberately de-identifies admission timestamps 
(e.g., exact admission dates, hospitalization sequences) 
to protect patient privacy. Therefore, researchers cannot 
determine the specific year of admission for individual 
patients. Research protocol approval (Certification ID: 
66829613) was granted by the Massachusetts Institute 
of Technology Ethics Committee with an informed con-
sent waiver due to the de-identified nature of pre-existing 
medical records.

Study population
The diagnosis of ASCVD was confirmed by manually 
examining ICD-9 and ICD-10 codes [23–25]. The ICD-9 
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and ICD-10 codes in MIMIC-IV are discharge diagno-
sis codes assigned by clinicians at the conclusion of a 
hospitalization. These codes are standardized for bill-
ing, administrative, and epidemiological purposes and 
reflect the final diagnoses for the specific hospitalization 
episode [26]. Historical ASCVD codes (e.g., prior MI 
[I25.2]) were excluded unless they directly contributed to 
the current critical illness. Detailed specifications of diag-
nostic codes are presented in Table S1. Exclusion criteria 
comprised: (1) age < 18 years, (2) ICU stay < 24 h, and (3) 
fewer than three blood glucose measurements or missing 
HbA1c data [27]. For subjects with recurrent critical care 
admissions, analyses were restricted to the initial hospi-
talization episode. The flowchart of the patient inclusion 
process is shown in Fig. 1.

Data extraction
Data extraction was performed using Structured Query 
Language (SQL) via Navicat Premium (v16.3.11), focus-
ing on five domains:

1.	 Demographics: age, sex, height, weight, ethnicity;
2.	 Clinical severity scores: Glasgow Coma Scale 

(GCS), Charlson Comorbidity Index (CCI); Acute 
Physiology and Chronic Health Evaluation II 
(APACHE II) score.

3.	 Vital signs: heart rate (HR), respiratory rate (RR), 
body temperature (°C);

4.	 Laboratory parameters: hemoglobin (Hb), red blood 
cell count (RBC), platelet count (Plt), white blood cell 
count (WBC), albumin, blood urea nitrogen (BUN), 
glucose, HbA1c, pH, lactate, creatinine;

5.	 Comorbidities and treatments: hypertension (HTN), 
diabetes, heart failure (HF), chronic obstructive 
pulmonary disease (COPD), acute kidney injury 
(AKI), myocardial infarction (MI), mechanical 
ventilation, hypoglycemic agents, and insulin 
therapy.

SHR was calculated by the following equation: [ABG 
(mg/dL)/(28.7 × HbA1c (%) − 46.7)] [11]. Due to the 

Fig. 1  Flowchart of the selection of patients
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absence of meal timing in the MIMIC-IV database, our 
analysis incorporated all consecutive glycemic measure-
ments obtained during ICU admissions, an approach 
aligning with methodological conventions established in 
prior critical care studies [27, 28]. We selected the coef-
ficient of variation (CV) as the primary metric for GV 
due to its widespread clinical applicability, simplicity of 
interpretation, and extensive validation in critical care 
settings. CV is calculated as the percentage ratio between 
the standard deviation and arithmetic mean of all con-
secutive glycemic measurements obtained during inten-
sive care unit monitoring (CV = SD/Mean​×100%), which 
standardizes variability across individuals with differing 
baseline glucose levels [29].

Based on established diagnostic criteria for glucose 
metabolism, participants were stratified into three dis-
tinct cohorts: normal glucose regulation (NGR), pre-
diabetes mellitus (Pre-DM), and diabetes mellitus (DM). 
The NGR group consisted of individuals with an HbA1c 
level < 5.7% and no prior history of diabetes. Those falling 
into the Pre-DM category had an HbA1c level ranging 
from 5.7% (inclusive) to 6.5% and no previous diabetes 
history. As for the DM group, it included patients who 
either had a history of diabetes or an HbA1c level ≥ 6.5% 
[30].

Vital signs (HR, RR, body temperature) and all other 
variables were defined using the first measured values 
within 24 h of ICU admission to capture baseline physi-
ological status before any ICU interventions that might 
alter these parameters. Variables with ≥ 20% missing val-
ues were excluded to mitigate potential bias, while those 
with less than 20% missing values were populated with 
multiple imputations.

Outcome measures
The primary outcome of this study was 28-day all-cause 
mortality, while the secondary outcome was 90-day all-
cause mortality.

Statistical analysis
Based on the tertiles of SHR and GV (SHR: <0.90, 0.91–
1.15, > 1.15; GV: <14.92, 14.93–24.46, > 24.46), partici-
pants were classified into high and low groups. The top 
tertile was regarded as “high”, and the lower two were 
regarded as “low”. Normality of continuous variables was 
assessed using Shapiro-Wilk tests, with normally dis-
tributed variables (expressed as mean ± SD) analyzed via 
Student’s t-tests or one-way ANOVA, and non-normally 
distributed variables (median [IQR]) compared using 
Wilcoxon rank-sum tests. Categorical variables (pre-
sented as counts and percentages) were evaluated by χ2 
or Fisher’s exact tests. Multicollinearity was assessed via 
variance inflation factor (VIF), with variables with VIF > 5 
excluded from multivariable models [31]. Kaplan-Meier 

(KM) curves were generated to estimate cumulative 
all-cause mortality risk, and Cox proportional hazards 
regression models were employed in three sequential 
steps: Model 1 (unadjusted), Model 2 (adjusted for age 
and sex), and Model 3 (adjusted for age and sex, GCS, 
CCI, APACHE II score, SpO2, Lactate, PH, Creatinine, 
BUN, PT, HB, AKI, HF, Hypoglycemic drugs, Mechani-
cal ventilation). The selection of covariates was based on 
clinically meaningful indicators and those demonstrating 
significance in univariate analysis, with collinearity con-
trolled (VIF < 5). Restricted cubic splines (RCS) analyzed 
dose-effect relationships of SHR and GV, while Schoen-
feld residuals validated proportional hazards assump-
tions. Landmark analyses evaluated temporal changes 
in mortality risk profiles, and receiver operating charac-
teristic (ROC) curves compared predictive performance 
(AUC, sensitivity, specificity) across metrics. Subgroup 
analyses stratified by sex, age, comorbidities, and treat-
ment modalities were visualized through forest plots of 
hazard ratios with 95% confidence intervals. Finally, sen-
sitivity analyses were performed by excluding patients 
with incomplete covariate data and those who had at 
least one episode of hypoglycemia, to assess the robust-
ness of the study.

For machine learning-based prediction, the Boruta 
algorithm ranked feature importance for 28-day mortal-
ity, followed by random partitioning of the dataset into 
training (80%) and testing (20%) subsets. Five models—
logistic regression (LR), decision tree (DT), random for-
est (RF), extreme gradient boosting (XGBoost), and light 
gradient-boosted machine (LightGBM)—were devel-
oped using selected features. Model performance was 
evaluated by AUC, accuracy, specificity, sensitivity, and 
F1-score, with the top-performing model further inter-
preted via SHapley Additive exPlanations (SHAP) to 
identify critical predictors [28]. All analyses were per-
formed in Python 3.9.12, SPSS 26.0, and DecisionLnnc 
1.0, with two-tailed p values < 0.05 considered statistically 
significant.

Results
Baseline characteristics
A total of 2807 patients meeting the analytical crite-
ria were identified. The results of the univariate logis-
tic regression are shown in Table S2. Table S3 shows 
the variance inflation factors, indicating that there is 
no multicollinearity among the variables. The baseline 
characteristics of the study population are presented in 
Table 1. Overall, the median age was 71 years, with 1650 
patients (58.78%) being male. Of these patients, 2387 
(85.03%) survived 28 days following ICU admission and 
2199 patients (78.34%) survived for 90 days. Compared 
to 28-day survivors, non-survivors were older and exhib-
ited a higher prevalence of comorbidities including AKI 
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and HF. Notably, non-survivors were less likely to receive 
hypoglycemic drugs but had higher mechanical ventila-
tion use. In deceased patients, lower levels of Hb, RBC 
and pH were observed, whereas elevated levels were 
identified in PT, PTT, HbA1c, BUN, glucose, lactate, 
WBC, creatinine, SHR, and GV. Moreover, compared 

with 28-day survivors, non-survivors demonstrated 
significantly higher APACHE II scores and CCI, while 
exhibiting lower GCS scores.

Table 1  Baseline characteristics according to 28-day mortality
Variable Overall Survivors(n = 2387) Non-survivors(n = 420) p
Demographics
 Age (years) 71 (61–81) 70 (60–80) 77 (67–85) < 0.01
 Male, n (%) 1650 (58.78) 1430 (59.91) 220 (52.38) < 0.01
 BMI (kg/m2) 27.34 (23.35–32.14) 27.46 (23.39–32.21) 26.82 (23.02–31.57) 0.1
Vital signs
 SpO2 (%) 98 (95–100) 98 (95–100) 98 (95–100) 0.38
 RR(bpm) 19 (16–23) 19 (16–22) 20 (16–24) < 0.01
 Temperature (℃) 36.78 (36.56–37.06) 36.78 (36.56–37.06) 36.78 (36.5-37.11) 0.16
 HR (bpm) 83 (71–97) 82 (71–97) 87 (73-100.25) < 0.01
Comorbidities
 AKI, n (%) 1009 (35.95) 793 (33.22) 216 (51.43) < 0.01
 HF, n (%) 1043 (37.16) 859 (35.99) 184 (43.81) < 0.01
 MI (%) 835 (29.75) 700 (29.33) 135 (32.14) 0.27
 HTN, n (%) 1265 (45.07) 1082 (45.33) 183 (43.57) 0.54
 COPD, n (%) 388 (13.82) 323 (13.53) 65 (15.48) 0.32
Glucose metabolism state
 NGR, n (%) 941 (33.52) 816 (34.19) 125 (29.76) 0.19
 Pr-DM, n (%) 680 (24.23) 576 (24.13) 104 (24.76)
 DM, n (%) 1186 (42.25) 995 (41.68) 191 (45.48)
Treatment
 Hypoglycemic drugs, n (%) 193 (6.88) 190 (7.96) 3 (0.71) < 0.01
 Mechanical ventilation, n (%) 979 (34.88) 747 (31.29) 232 (55.24) < 0.01
 RI, n (%) 953 (33.95) 812 (34.02) 141 (33.57) 0.9
Laboratory measurements
 PT(s) 13 (11.9–14.8) 12.9 (11.9–14.6) 13.7 (12.3-16.33) < 0.01
 PTT(s) 30.1 (26.8–38.3) 30 (26.7–38.7) 30.5 (26.9-36.97) 0.97
 BUN(mg/dL) 19 (14–29) 18 (13–28) 25 (16-40.25) < 0.01
 Glucose(mg/dL) 132 (106–178) 130 (105–175) 146 (118–205) < 0.01
 HbA1c(%) 5.9 (5.4–6.7) 5.8 (5.4–6.7) 5.9 (5.5–6.7) 0.01
 Hb(g/dL) 11.9 (10.2–13.4) 12 (10.3–13.5) 11.25 (9.5–12.9) < 0.01
 PH 7.39 (7.33–7.43) 7.39 (7.34–7.43) 7.38 (7.31–7.44) < 0.01
 Plt(109/L) 208 (160.5–264) 208 (162–262) 207 (152-278.25) 0.89
 RBC(m/Ul) 4.01 (3.45–4.47) 4.04 (3.5–4.49) 3.8 (3.22–4.38) < 0.01
 Lactate(mmol/L) 1.6 (1.2–2.35) 1.6 (1.2–2.3) 1.8 (1.3–2.8) < 0.01
 GV(%) 19.36 (13.36–29.53) 18.91 (13.05–28.82) 22.52 (15.37–32.79) < 0.01
 SHR 1.05 (0.88–1.32) 1.04 (0.87–1.29) 1.18 (0.95–1.48) < 0.01
 WBC(K/Ul) 10.7 (8-14.1) 10.4 (7.9–13.7) 12.3 (9.28-17) < 0.01
 Creatinine(mg/dL) 1 (0.8–1.4) 1 (0.8–1.4) 1.1 (0.9–1.72) < 0.01
Clinical scores
 APACHE II score 16 (12–21) 15 (11–20) 20 (15–25) < 0.01
 GCS 15 (13–15) 15 (13–15) 14 (11–15) < 0.01
 CCI 6 (4–8) 6 (4–8) 7 (6–9) < 0.01
BMI body mass index; HR heart rate; RR respiratory rate; AKI acute kidney injury; HF heart failure; HLD hyperlipidemia; MI myocardial infarction; HTN hypertension; 
COPD chronic obstructive pulmonary disease; NGR normal glucose regulation; Pre-DM pre-diabetes mellitus; DM diabetes mellitus; RI insulin; PT prothrombin time; 
PTT partial thromboplastin time; BUN blood urea nitrogen; HbA1c glycated hemoglobin; Hb haemoglobin concentration; Plt platelet; RBC red blood cell; GV glycemic 
variability; SHR stress hyperglycemia ratio; WBC white blood cell; APACHE II score, acute physiology and chronic health evaluation II score; GCS glasgow coma scale; 
CCI Charlson comorbidity index
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The association between SHR and mortality
K–M curves demonstrated that the 28-day survival rate 
progressively declined with increasing SHR quantiles 
across different glucose metabolic states (Fig.  2A, D, 
and G). In adjusted Cox proportional hazards regression 
analyses of the overall cohort, patients in the highest SHR 
tertile demonstrated a 1.24-fold increased risk of 28-day 
all-cause mortality (HR 1.24, 95% CI 1.10–1.41) and 
1.15-fold elevated 90-day mortality risk (HR 1.15, 95% 
CI 1.04–1.28) compared with those in the lowest tertile. 

Stratified analyses across glucose metabolism subgroups 
indicated consistent SHR-mortality associations, with the 
notable exception of non-significant 28-day risk elevation 
in the DM population (HR 1.14, 95% CI 0.80–1.62). The 
complete spectrum of subgroup-specific hazard ratios 
with corresponding confidence intervals is detailed in 
Table S4. RCS analyses revealed a linear dose-response 
relationship between SHR and 28-day mortality in Pre-
DM individuals (P for nonlinearity = 0.36) while demon-
strating a nonlinear association in the NGR population 

Fig. 3  Multivariable-adjusted restricted cubic spline analyses of SHR and GV for 28-day mortality. Adjusted for covariates as in Table 2. (A) SHR (B) GV

 

Fig. 2  Kaplan-Meier curves of SHR, GV, and their combination for 28-day mortality. (A–C) patients with NGR; (D–F) patients with Pre-DM; (G–I) patients 
with DM
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(P for nonlinearity = 0.023). However, no significant dose-
response association was observed between SHR and 
mortality outcomes in DM patients (Fig.  3A). Further-
more, subgroup analyses revealed no statistically signifi-
cant interaction effects across predefined clinical strata 
(all P-interaction > 0.05), confirming the robustness of the 
primary findings as illustrated in Fig. 6A.

The association between GV and mortality
The KM curves illustrating the association between GV 
and 28-day mortality are presented in Fig. 2B, E, and H. 
Notably, no significant survival differences were observed 
across GV tertiles in the DM population (P = 0.69). In the 
overall population and all glycemic subgroups, no signifi-
cant association between GV and 28-day mortality was 
observed regardless of whether GV was modeled as a 
continuous variable (overall: HR 1.02 per 1% increment, 
95% CI 0.89–1.17; NGR: HR 1.02 per 1% increment, 
95% CI 0.78–1.33; Pre-DM: HR 1.04 per 1% increment, 
95% CI 0.78–1.37; DM: HR 1.05 per 1% increment, 95% 
CI 0.84–1.31) or categorical variable (overall: highest vs. 
lowest tertile: HR 1.03, 95% CI 0.78–1.34; NGR: highest 
vs. lowest tertile: HR 1.07, 95% CI 0.65–1.60; Pre-DM: 
highest vs. lowest tertile: HR 1.07, 95% CI 0.62–1.86; DM: 
highest vs. lowest tertile: HR 1.17, 95% CI 0.70–1.94). 
Similarly, no significant association between GV and 
90-day mortality was observed in the overall popula-
tion and all glycemic subgroups (Table S4). RCS analyses 
failed to identify significant dose-response relationships 
between GV and clinical outcomes in any glucose metab-
olism subgroup (Fig. 3B). Furthermore, subgroup analy-
sis adjusted for confounding factors revealed that GV 
was significantly associated with 28-day mortality only in 
ASCVD patients with HTN (P = 0.032, Fig. 6B).

The association of combined SHR and GV with mortality
The K-M curves depicting 28-day mortality for the com-
bination of SHR and GV are shown in Fig. 2C, F, and I. 
Among NGR patients, those with elevated SHR (> 1.15) 
and GV (> 24.46) demonstrated the highest risks for 
28-day mortality (HR = 2.07, 95% CI 1.23–3.48) and 
90-day mortality (HR = 2.78, 95% CI 1.73–4.46). Similarly, 
Pre-DM individuals with high SHR/high GV showed the 
greatest 90-day mortality risk (HR  1.75, 95% CI 1.02–
3.00), while the low SHR/high GV subgroup (SHR < 1.15, 
GV > 24.46) exhibited the highest 28-day mortality risk 
(HR = 2.08, 95% CI 1.27–3.41). However, analyses of com-
bined SHR and GV parameters demonstrated no statisti-
cally significant associations with mortality outcomes in 
DM patients (all P > 0.05; Table 2).

Proportional hazard testing demonstrated con-
stant risk ratios over time between SHR/GV com-
binations and mortality in NGR and DM subgroups 
[NGR: P = 0.353 (Table S6); DM: P = 0.198, (Table S7)]. 

However, non-constant risk ratios were observed in the 
Pre-DM subgroup (P = 0.021, Table S8), with Beta val-
ues approaching zero around day 4 (Fig. S1) (Fig. 4). As 
shown in Fig.  5, no significant survival differences were 
detected among Pre-DM patients within 4 days post-
ICU admission (P = 0.061). Beyond day 4, however, sur-
vival disparities became evident (P < 0.001), with patients 
in the low SHR/low GV subgroup demonstrating higher 
28-day survival rates compared to other combinations 
(Fig. 6).

ROC curve analysis
The ROC curves of SHR, GV, and their combination for 
predicting mortality in ASCVD patients are shown in 
Fig. 4 and Table S5. In the NGR and Pre-DM subgroups, 
the combined model outperformed SHR alone [NGR: 
0.688 (0.636–0.739) vs. 0.623 (0.568–0.679), P = 0.028; 
Pre-DM: 0.712 (0.659–0.764) vs. 0.639 (0.582–0.696), 
P = 0.102] and GV alone [NGR: 0.688 (0.636–0.739) 
vs. 0.578 (0.524–0.633), P < 0.001; Pre-DM: 0.712 
(0.659–0.764) vs. 0.593 (0.524–0.652), P < 0.001] in pre-
dicting 28-day mortality. However, no significant dif-
ferences were observed between the combined model 
and SHR alone [0.587 (0.542–0.631) vs.. 0.577 (0.532–
0.623), P = 0.236] or GV alone [0.587 (0.542–0.631) vs. 
0.546 (0.503–0.589), P = 0.148] in the DM subgroup 
(Fig.  4A–C). Similarly, for 90-day mortality prediction, 
the combined model demonstrated superior perfor-
mance compared to SHR and GV alone in the NGR and 
Pre-DM subgroups. In the DM subgroup, the combined 
model showed enhanced predictive ability compared to 
SHR alone [0.578 (0.541–0.616) vs. 0.560 (0.520–0.599), 
P = 0.027], but no significant difference was observed 
versus GV alone [0.578 (0.541–0.616) vs. 0.568 (0.531–
0.604), P = 0.555] (Fig.  4D–F). Furthermore, Fig.  4 illus-
trates the ROC curves of SHR, GV, and their combination 
alongside three clinical scores (GCS, CCI, APACHE II) 
for predicting 28-day and 90-day mortality, respectively.

Sensitivity analysis
We conducted several sensitivity analyses to assess the 
robustness of our findings. First, after excluding 84 
patients who experienced at least one hypoglycemic epi-
sode during their ICU hospitalization, the results of the 
Cox proportional hazards regression analysis remained 
consistent with those from the primary analysis (Table 
S9). Second, upon excluding 1264 participants with miss-
ing data, the association between the combination of 
SHR and GV and the prognosis of patients with ASCVD 
continued to align with the primary outcomes (Table 
S10). These sensitivity analyses corroborate the reliability 
and generalizability of the principal findings.
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Variables Model 1 Model 2 Model 3
HR (95%CI) P HR (95%CI) P HR (95%CI) P

28-day mortality
 Overall
  Group 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
  Group 2 1.50 (1.13–2.01) 0.006 1.50 (1.12–2.00) 0.006 1.10 (0.81–1.48) 0.555
  Group 3 1.80 (1.39–2.34) < 0.001 1.81 (1.40–2.35) < 0.001 1.49 (1.15–1.94) 0.003
  Group 4 2.23 (1.74–2.88) < 0.001 2.26 (1.76–2.92) < 0.001 1.45 (1.10–1.90) 0.007
  P for trend 1.30 (1.20–1.41) < 0.001 1.31 (1.21–1.42) < 0.001 1.15 (1.06–1.25) 0.001
 Patients with NGR
  Group 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
  Group 2 1.23(0.56–2.73) 0.608 1.10 (0.50–2.44) 0.819 0.89 (0.39–2.04) 0.791
  Group 3 1.69(1.12–2.54) 0.012 1.64 (1.09–2.47) 0.018 1.41 (0.92–2.17) 0.116
  Group 4 3.03(1.87–4.91) < 0.001 3.01 (1.86–4.87) < 0.001 2.07 (1.23–3.48) 0.006
  P for trend 1.40(1.20–1.63) < 0.001 1.39 (1.19–1.63) < 0.001 1.25 (1.06–1.48) 0.007
 Patients with pre-DM
  Group 1 1.00 (Reference) 1.00 (Reference)
  Group 2 2.15 (1.23–3.74) 0.007 1.96 (1.14–3.46) 0.016 1.27 (0.69–2.32) 0.438
  Group 3 2.50 (1.56–4.00) < 0.001 2.58 (1.61–4.12) < 0.001 2.08 (1.27–3.41) 0.004
  Group 4 2.66 (1.47–4.81) 0.001 2.72 (1.50–4.93) 0.001 1.95 (1.03–3.72) 0.041
  P for trend 1.44 (1.22–1.69) < 0.001 1.46 (1.23–1.72) < 0.001 1.32 (1.10–1.58) 0.003
 Patients with DM
  Group 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
  Group 2 1.21 (0.79–1.84) 0.376 1.28 (0.84–1.95) 0.251 0.96 (0.61–1.51) 0.862
  Group 3 1.59 (0.98–2.56) 0.059 1.55 (0.96–2.50) 0.074 1.17 (0.71–1.91) 0.541
  Group 4 1.74 (1.19–2.56) 0.005 1.79 (1.22–2.63) 0.003 1.19 (0.78–1.81) 0.421
  P for trend 1.21 (1.07–1.36) 0.002 1.21 (1.07–1.36) 0.002 1.08 (0.95–1.23) 0.264
90-day mortality
 Overall
  Group 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
  Group 2 1.63 (0.90–2.96) 0.107 1.46 (0.80–2.65) 0.216 1.14 (0.62–2.12) 0.671
  Group 3 1.79 (1.27–2.51) 0.001 1.74 (1.24–2.44) < 0.001 1.50 (1.05–2.14) 0.025
  Group 4 2.90 (1.92–4.40) < 0.001 2.87 (1.89–4.34) < 0.001 1.88 (1.21–2.94) 0.005
  P for trend 1.39 (1.22–1.58) < 0.001 1.38 (1.21–1.57) < 0.001 1.23 (1.08–1.41) 0.002
 Patients with NGR
  Group 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
  Group 2 1.04 (0.70–1.55) 0.847 1.04 (1.70–1.54) 0.858 1.12 (0.74–1.68) 0.592
  Group 3 1.57 (1.08–2.29) 0.018 1.57 (1.06–2.29) 0.02 1.61 (1.07–2.46) 0.023
  Group 4 2.91(1.96–4.33) < 0.001 2.91 (1.95–4.37) < 0.001 2.78 (1.73–4.46) < 0.001
  P for trend 1.39(1.22–1.58) < 0.001 1.38 (1.21–1.57) < 0.001 1.23 (1.08–1.41) 0.002
 Patients with Pre-DM
  Group 1 1.00 (Reference) 1.00 (Reference)
  Group 2 2.25 (1.47–3.49) < 0.001 2.07 (1.33–3.20) 0.001 1.43 (0.89–2.30) 0.142
  Group 3 1.81 (1.20–2.74) 0.005 1.87 (1.23–2.82) 0.003 1.60 (1.04–2.46) 0.034
  Group 4 2.30 (1.39–3.79) 0.001 2.31 (1.10–3.82) 0.001 1.75 (1.02–3.00) 0.042
  P for trend 1.20 (1.09–1.33) < 0.001 1.21 (1.09–1.33) < 0.001 1.09 (0.98–1.21) 0.117
 Patients with DM
  Group 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
  Group 2 1.59 (1.12–2.25) 0.009 1.70 (1.20–2.41) 0.003 1.28 (0.89–1.86) 0.183
  Group 3 1.59 (1.05–2.41) 0.029 1.55 (1.02–2.35) 0.039 1.23 (1.80–1.88) 0.35

Table 2  The association of the combination of SHR and GV with all-cause mortality
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Machine learning: SHR, GV and 28-day mortality
The final variables incorporated into the machine learn-
ing models were determined through Boruta algorithm 
analysis (Fig.  7), with variable importance ranked in 
descending order from right to left. The Boruta algorithm 
selected 14, 13, and 14 features as optimal predictors of 
mortality from the NGR, Pre-DM, and DM subgroups, 
respectively. Results of the Boruta algorithm in the over-
all population are presented in Fig. S2.

The RF model demonstrated superior performance 
in the NGR population (AUC = 0.804; sensitivity: 0.880, 
specificity: 0.671, accuracy: 0.873, F1-score: 0.504) 
(Fig.  8A). The LR model exhibited the best predictive 
capability in the Pre-DM subgroup (AUC = 0.757; sensi-
tivity: 0.714, specificity: 0.757, accuracy: 0.654, F1-score: 

0.574) (Fig.  8B). For the DM cohort, the LR model 
achieved optimal performance (AUC = 0.794; sensitivity: 
0.921, specificity: 0.655, accuracy: 0.697, F1-score: 0.636) 
(Fig.  8C). Detailed sensitivity, specificity, and accuracy 
metrics for other models are provided in Table S11. The 
results of the ROC curve analysis in the total population 
are presented in Fig. S3.

Figure  8D–I present scatter plots of mortality-associ-
ated risk factors and average importance bar plots for the 
optimal models. The results demonstrate that GV exhib-
ited the lowest contribution weight in the NGR subgroup 
(Fig. 8D, G) and the Pre-DM subgroup (Fig. 8E, H). Inter-
estingly, both GV and SHR showed minimal contribution 
weights in the DM subgroup (Fig.  8F, I). The interpret-
ability of the 28-day mortality prediction model in the 

Fig. 4  The ROC curves of SHR and GV as biomarkers for predicting 28-day mortality(A–C) and 90-day mortality(D–F). A SHR versus GV versus SHR+GV 
versus APACHE II, CCI, and GCS in NGR patients for predicting 28-day mortality. B SHR versus GV versus SHR+GV versus APACHE II, CCI, and GCS in Pre-DM 
patients for predicting 28-day mortality. C SHR versus GV versus SHR+GV versus APACHE II, CCI, and GCS in DM patients for predicting 28-day mortality. 
D SHR versus GV versus SHR+GV versus APACHE II, CCI, and GCS in NGR patients for predicting 90-day mortality. E SHR versus GV versus SHR+GV versus 
APACHE II, CCI, and GCS in Pre-DM patients for predicting 90-day mortality. F SHR versus GV versus SHR+GV versus APACHE II, CCI, and GCS in DM patients 
for predicting 90-day mortality.

 

Variables Model 1 Model 2 Model 3
HR (95%CI) P HR (95%CI) P HR (95%CI) P

  Group 4 1.92 (1.38–2.67) < 0.001 1.99 (1.43–2.76) < 0.001 1.39 (0.97–1.99) 0.073
  P for trend 1.26 (1.16–1.36) < 0.001 1.24 (1.15–1.35) < 0.001 1.12 (1.03–1.22) 0.011
Model 1: unadjusted;

Model 2: adjusted for age and sex

Model 3: adjusted for Model 2 plus GCS, CCI, APACHE II score, SpO2, Lactate, PH, Creatinine, BUN, PT, HB, AKI, HF, Hypoglycemic drugs, Mechanical ventilation

Group 1: Low SHR and Low GV (SHR < 1.15 and GV < 24.46); Group 2: Low SHR and High GV (SHR < 1.15 and GV > 24.46); Group 3: High SHR and Low GV (SHR > 1.15 and 
GV < 24.46); Group 4: High SHR and High GV (SHR > 1.15 and GV > 24.46);

Table 2  (continued) 
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overall patient population is presented in Fig. S4. To vali-
date the models’ interpretability, Fig. S5 provides a com-
parative visualization of clinical parameters influencing 
mortality risk predictions between representative non-
survivors (Fig. S5A, C, E) and survivors (Fig. S5B, D, F).

Discussion
In this study, we evaluated the associations of stress 
hyperglycemia ratio SHR, GV, and their combined effects 
on 28-day and 90-day all-cause mortality in ASCVD 
patients. Notably, Cox proportional hazards models 
showed that SHR was significantly associated with mor-
tality in the NGR and Pre-DM subgroups, but not in 
DM patients. No significant associations were observed 

Fig. 6  Forest plots for subgroup analyses of A SHR and B GV with 28-day mortality

 

Fig. 5  Landmark survival analysis of 28-day mortality with combined SHR and GV assessment in Pre-DM patients. Low SHR: SHR < 1.15; High SHR: SHR > 
1.15; Low GV: GV < 24.46; High GV: GV > 24.46
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between GV and mortality across all subgroups. Intrigu-
ingly, the highest 28-day mortality risks were identified 
in NGR patients with high SHR/high GV profiles and 
Pre-DM patients with low SHR/high GV profiles. In 

contrast, combined SHR-GV metrics lacked prognostic 
significance in the DM subgroup. ROC analysis showed 
that in the NGR and Pre-DM cohorts, the combination 
of SHR and GV outperformed SHR alone or GV alone in 

Fig. 7  The Boruta algorithm ranks the importance of potential risk factors for 28-day mortality.The x-axis delineates parameter nomenclature, whereas 
the y-axis quantifies standardized scores (Z-scores) across variables. Boxplot distributions graphically depict the dispersion characteristics of normalized 
values during model computation cycles. A patients with NGR B patients with Pre-DM C patients with DM
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predictive performance, while in DM patients, the com-
bined assessment was only superior to SHR in predict-
ing 90-day mortality. Landmark survival analysis further 
demonstrated that combined metrics gained statistical 
significance after day 4 of ICU admission in Pre-DM 
patients. SHAP-based interpretation of machine learn-
ing models corroborated these findings, underscoring the 
clinical utility of dual SHR-GV assessment for risk strati-
fication and glycemic management in heterogeneous 
populations.

Current evidence predominantly focuses on SHR and 
GV in critically ill cohorts. Stress hyperglycemia, a hall-
mark of disease severity in critical illness [32, 33], drives 
inflammatory cytokine modulation and oxidative stress 
amplification [34]. Chen et al. [15] identified SHR as an 
independent predictor of ICU mortality in cerebrovascu-
lar patients, particularly non-diabetics. Duan et al. [35] 

linked elevated SHR to early neurological deterioration 
post-thrombolysis in acute stroke, while NHANES data 
revealed J-/U-shaped SHR-mortality relationships for all-
cause and cardiovascular deaths [36]. Cheng et al. [37] 
reported U-shaped associations between SHR and mor-
tality up to 365 days in severe atrial fibrillation. A meta-
analysis of 87,974 AMI patients demonstrated increased 
major adverse cardio-cerebrovascular events (MACCE) 
risks with upper-quartile SHR [38, 39]. Zhihan Lyu fur-
ther associated elevated SHR with adverse events in 
12,899 non-cardiac surgical patients, especially non-dia-
betic [40]. Glycemic variability has similarly been impli-
cated in adverse outcomes. Su et al. [41] identified high 
GV as an independent in-hospital mortality predictor 
in 17,756 ICU patients, correlating with hypoglycemic/
hyperglycemic events. He et al. [27] demonstrated that 
non-diabetic CAD patients with elevated SHR/GV faced 

Fig. 8  ROC curves and SHAP interpretation of ML-based 28-day mortality prediction models. A, D, G patients with NGR; B, E, H patients with Pre-DM; C, 
F, I patients with DM. LR, logistic regression; DT, decision tree; RF, random forest; XGBoost, extreme gradient boosting; LightGBM, light gradient boosting 
machine
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the poorest prognoses, whereas diabetic patients with 
high SHR but low GV exhibited highest mortality. Cumu-
latively, these findings advocate for integrated SHR-GV 
assessment to refine risk prediction and personalize gly-
cemic management in critical care.

Stress-induced hyperglycemia is primarily driven by 
sympathetic nervous system hyperactivation, trigger-
ing substantial release of epinephrine, norepinephrine, 
and cortisol. These hormones promote glycogenolysis 
and gluconeogenesis, elevating blood glucose levels [42]. 
Concurrently, they exacerbate oxidative stress, acceler-
ate atherosclerosis, and induce endothelial injury—key 
mechanisms amplifying cardiovascular pathogenesis 
[17, 36, 43]. In diabetic patients, elevated plasminogen 
activator inhibitor-1 (PAI-1) levels and impaired nitric 
oxide (NO)-mediated antiplatelet responses contribute 
to platelet dysfunction, partially explaining hypercoagu-
lability and heightened thrombotic risk under hypergly-
cemia [44, 45]. Stress hyperglycemia may also disrupt 
the blood-brain barrier via intracellular acidosis, lead-
ing to mitochondrial dysfunction, energy depletion, and 
apoptosis—critical drivers of adverse post-stroke out-
comes [46]. GV exacerbates plaque vulnerability through 
inflammatory pathway activation and oxidative stress 
[47], while promoting cardiac fibrosis, adverse ventricu-
lar remodeling, and sympatho-adrenal-mediated isch-
emic events [27].

HbA1c serves as a well-validated biomarker of cumu-
lative glycemic exposure over the preceding 8–12 weeks, 
which can be translated into eAG concentrations for this 
period [48]. In contrast to absolute hyperglycemia, the 
association between relative hyperglycemia (defined as 
acute glucose elevation contextualized against chronic 
glycemic baselines) and critical illness outcomes remains 
independent of background glucose status [49]. The 
SHR operationalizes this concept by integrating chronic 
glycemic status (derived from HbA1c) with acute glu-
cose dysregulation, thereby allowing it to distinguish 
acute stress-mediated hyperglycemia (e.g., triggered by 
systemic inflammation or endocrine activation during 
critical illness) from chronic hyperglycemia (e.g., diabe-
tes-related dysregulation). By quantifying the magnitude 
of acute glucose excursions beyond chronic baselines, 
SHR specifically captures the added mortality risk attrib-
utable to transient metabolic crises that directly exacer-
bate short-term outcomes in critically ill populations.

Given the prognostic significance of stress-induced 
hyperglycemia and acute glycemic fluctuations, inte-
grated evaluation of SHR and GV may refine risk 
stratification in critically ill populations. This study 
demonstrated significant associations between com-
bined SHR-GV metrics and adverse outcomes in NGR 
and Pre-DM subgroups with ASCVD, whereas no such 
associations were observed in the DM cohort. These 

findings corroborate the hypothesis that non-diabetic 
individuals exhibit heightened vulnerability to glycemic 
variability-related complications compared with diabetic 
patients [37, 50–52]. Mechanistically, diabetic patients 
may develop adaptive tolerance to glucose fluctuations 
through chronic oxidative stress exposure and expanded 
harm thresholds (lower hypoglycemia/higher hyper-
glycemia limits) [27, 51], while insulin-treated diabetics 
may retain superior anti-inflammatory resilience [53, 
54]. In non-diabetic individuals, acute glycemic fluctua-
tions significantly exacerbate oxidative stress and induce 
endothelial dysfunction [55]. Conversely, patients with 
diabetes—owing to chronic hyperglycemia—may exhibit 
diminished sensitivity to acute glucose fluctuations [15]. 
Furthermore, DM patients more frequently receive inten-
sive glucose management (e.g., insulin protocols, oral 
hypoglycemics), which may artificially suppress SHR val-
ues and obscure its prognostic signal.

Notably, GV alone showed no mortality association 
after multivariable adjustment, potentially attributable 
to the following: (1) This study introduces a novel appli-
cation of CV-quantified GV to assess mortality risk in 
patients with ASCVD. Importantly, GV demonstrated 
no prognostic value in either diabetic or non-diabetic 
subgroups, despite the predictive utility of SHR. This 
aligns with findings by Yoo et al. [56], who reported no 
association between 10-year ASCVD risk and traditional 
GV metrics, suggesting that GV itself may have limited 
pathophysiological relevance in this context rather than 
reflecting data artifacts. (2) The MIMIC-IV database does 
not include meal timing, making it impossible to distin-
guish pre-prandial versus post-prandial glucose measure-
ments. Unstandardized sampling could introduce noise 
from non-physiological fluctuations. Intriguingly, while 
GV alone showed limited predictive utility, its integration 
with SHR improved risk stratification in NGR/Pre-DM 
subgroups, consistent with prior evidence in coronary 
artery disease cohorts. Combining SHR-GV assessment 
enhanced risk stratification, suggesting synergistic prog-
nostic effects through distinct pathways—acute meta-
bolic dysregulation versus chronic glycemic oscillations 
[27]. Future studies should explore additional GV metrics 
[e.g., variation independent of mean (VIM), average real 
variability (ARV)] to further validate these findings.

Our findings demonstrate that the combined assess-
ment of SHR and GV provides synergistic prognos-
tic value through complementary pathophysiological 
mechanisms: SHR quantifies acute hyperglycemic stress 
relative to chronic glycemic control, while GV captures 
destabilizing glucose fluctuations that exacerbate oxi-
dative damage [10, 16]. This interaction is particularly 
pronounced in non-diabetic (NGR/Pre-DM) patients, 
in whom the absence of chronic hyperglycemic adapta-
tion amplifies the mortality risk of acute dysregulation. 
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Statistically, the SHR + GV model demonstrated supe-
rior discrimination in these subgroups. Machine learn-
ing validation and SHAP analysis further confirmed 
GV’s incremental prognostic contribution, despite its 
lower feature weight relative to SHR. Methodologically, 
the absence of multicollinearity supports robust vari-
able independence. Notably, our results align with recent 
evidence from He et al. [27], who reported extreme mor-
tality risks (OR 10.83 for in-hospital death; HR 5.83 for 
1-year mortality) in non-diabetic coronary patients with 
elevated SHR/GV. The integration of GV with SHR pro-
vides a clinically actionable framework for glycemic risk 
stratification in critically ill patients with ASCVD with-
out diabetes. Landmark survival analysis demonstrated 
limited prognostic utility of combined SHR-GV assess-
ment for mortality during the initial 4 days of ICU admis-
sion in Pre-DM patients. However, divergent mortality 
risks emerged post-day 4, potentially mediated by early 
stress response mechanisms. During this critical phase, 
catecholamine and cortisol surges may drive transient 
hyperglycemia to prioritize energy allocation to vital 
organs [57], with elevated SHR reflecting preserved 
metabolic adaptability rather than glucose dysregulation. 
Early interventions (e.g., vasoactive agents, fluid resusci-
tation) may induce hemodynamic instability-linked gly-
cemic fluctuations, though such perturbations are often 
transient and physiologically contained without cumula-
tive damage.

Strengths and limitations
Our study advances critical care metabolomics research 
through three innovations. First, we demonstrate that 
glycemic phenotype modifies the prognostic utility of 
SHR and GV, a novel finding overlooked in prior unstrat-
ified ICU analyses. The synergistic mortality prediction 
improvement from combined SHR-GV assessment in 
NGR/Pre-DM patients contrasts sharply with the attenu-
ated associations observed in diabetics, compellingly 
arguing for phenotype-tailored glucose monitoring pro-
tocols. Second, the SHAP-based machine learning frame-
work extends beyond conventional Cox regression by 
providing visually intuitive quantification of variable-spe-
cific contributions to clinical outcomes. Third, landmark 
analysis was applied to evaluate time-dependent varia-
tions in the prognostic impact of SHR and GV across dif-
ferent hospitalization durations in patients with ASCVD.

However, this study has several limitations. First, while 
our methods aimed to minimize bias, residual confound-
ing from unmeasured variables may persist. Second, 
selection bias might have been introduced by excluding 
patients with missing HbA1c data or inadequate glycemic 
measurements. Third, this study uses a cross-sectional 
design, which precludes assessing dynamic changes in 
clinical parameters over time. Future longitudinal studies 

integrating serial measurements are needed to charac-
terize the temporal trajectories of therapeutic responses 
in the critically ill population. Fourth, although compre-
hensive analytical methods were employed, the cohort 
predominantly comprised White (non-Hispanic) par-
ticipants, limiting the generalizability of our findings to 
other racial and ethnic populations.

Conclusion
This study demonstrates that combined assessment of 
SHR and GV serves as a robust prognostic tool for mor-
tality risk stratification in patients with ASCVD, with sig-
nificantly enhanced predictive accuracy observed in NGR 
and Pre-DM subgroups. These findings advocate for per-
sonalized glycemic management strategies tailored to 
individual metabolic phenotypes, providing a framework 
to optimize clinical outcomes through precision medi-
cine approaches.
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