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Abstract
Stress-induced hyperglycemia (SIH) is a physiological response to acute or chronic stress characterized by elevated 
blood glucose levels. It is prevalent in both patients with and without diabetes, particularly those with acute or 
critical illnesses. The development of SIH is characterized by complex interactions among catecholamines, cortisol, 
and inflammatory mediators such as cytokines, resulting in increased hepatic glucose production and insulin 
resistance. While mild to moderate SIH may provide a protective mechanism during stress, prolonged or excessive 
hyperglycemia can exacerbate inflammation and oxidative stress, contributing to adverse outcomes in conditions 
such as acute myocardial infarction, heart failure, and cerebrovascular diseases. The stress-hyperglycemia ratio 
(SHR), defined as the ratio of admission glucose to estimated mean glucose (derived from glycated hemoglobin 
[HbA1c]), has emerged as a valuable tool for quantifying stress hyperglycemia. Unlike absolute glucose levels, 
the SHR accounts for background hyperglycemia and provides a more accurate indicator of the relative glucose 
elevation associated with critical illness. Extensive research has demonstrated a U-shaped or J-shaped relationship 
of the SHR with disease outcomes, indicating that both low and high SHRs are associated with increased mortality 
and morbidity. The SHR has shown significant predictive value in cardiovascular diseases (e.g., acute coronary 
syndrome, heart failure), cerebrovascular diseases (e.g., acute ischemic stroke, intracerebral hemorrhage), and 
infectious diseases (e.g., sepsis, pneumonia). It also plays a role in other conditions, such as acute pancreatitis and 
certain cancers. The ease of calculating the SHR from widely available admission glucose and HbA1c tests makes it 
a practical and valuable prognostic marker in clinical settings. This review examines the relationship between the 
SHR and critical illnesses, highlighting its mechanisms and predictive value across various diseases.
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Research insights
What is currently known about this topic?

 	• SIH common in critical illness. SHR better 
than glucose levels. SHR predicts outcomes in 
majordiseases.

What is the key research question?

 	• How does the SHR predict outcomes in critical 
illnesses?

Graphical abstract
Predictive value of SHR in cardiovascular, cerebrovascular, infectious, and other diseases. 
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What is new?

 	• SHR's Ushaped impact on prognosis. SHR's role 
beyon d glucose levels. SHR guiding multitargeted 
therapies.

How might this study influence clinical practice?

 	• SHR could improve risk stratification and guide 
targeted interventions in critically ill patients.

Introduction
Stress-induced hyperglycemia (SIH) is a condition char-
acterized by elevated blood glucose levels precipitated 
by either acute or chronic stress. It is not only preva-
lent among individuals with diabetes but can also be 
observed in patients without diabetes, particularly in 
those experiencing acute or critical illnesses [1]. The 
occurrence of hyperglycemia in response to acute stress 
is widely regarded as a physiological response mecha-
nism designed to provide the body with increased energy 
to cope with unexpected events [1]. The development of 
SIH is contingent upon a multifaceted interplay of coun-
terregulatory hormones, encompassing catecholamines, 
growth hormones, cortisol, and inflammatory media-
tors such as cytokines [2, 3]. Feedback and feed-forward 
loops between these hormones and cytokines have been 
identified as crucial elements in the development of this 
response [3]. These loops have been shown to lead to 
increased hepatic glucose production and insulin resis-
tance [4], resulting in elevated levels of hepatic glucose 
output. In this context, gluconeogenesis has been iden-
tified as a pivotal factor in SIH [5]. However, prolonged 
or excessive stress hyperglycemia may have detrimental 
effects on organisms, with hyperglycemia exacerbating 
cytokine production, inflammation and oxidative stress, 
which may lead to a vicious cycle in which hyperglycemia 
leads to further hyperglycemia [6, 7]. This disease pro-
cess has been associated with the onset, progression and 
prognosis of a number of diseases of notable importance, 
including acute myocardial infarction, heart failure, and 
cerebrovascular diseases [2, 8, 9].

Many studies have shown that SIH is associated with 
poor outcomes in critically ill patients. However, in the 
absence of additional evidence, glucose levels are cho-
sen arbitrarily. As a result, the definition of the optimal 
threshold for SIH is inconsistent across guidelines. The 
European Society of Cardiology (ESC) recommends 
defining SIH as an admission glucose level greater 
than 11 mmol/L (198  mg/dL) *, whereas the American 
Heart Association (AHA) recommends defining SIH 
as an admission glucose level greater than 10 mmol/L 
(180 mg/dL), regardless of the diagnosis of diabetes [10, 
11]. Although, hyperglycemia in hospitalized patients is 

associated with increased mortality in a variety of patient 
groups, including critically ill patients [12–14]. How-
ever, the relationship between glucose concentration 
and patient prognosis is complex. A number of under-
lying conditions [15], known diabetes mellitus [16] and 
background hyperglycemia (i.e., patients with high base-
line blood glucose) [17] may influence the association 
between glucose and patient prognosis. Therefore, the 
hyperglycemic state of a hospitalized patient may be due 
to the presence of stress hyperglycemia; it may also reflect 
poor glycemic control in individuals with chronic diabe-
tes, being similar to that patient’s preadmission glucose 
level, or both. Mortality has subsequently been found to 
be greater in patients with new-onset hyperglycemia than 
in patients with known diabetes with hyperglycemia [18, 
19]. This finding also suggests that elevated blood glucose 
due to stress hyperglycemia is a more accurate indica-
tor of disease prognosis than elevated blood glucose in 
patients with known diabetes and background hypergly-
cemia [20].

Therefore, to better identify and quantify stress hyper-
glycemia, in 2015, Roberts et al. first proposed a new 
parameter to assess stress hyperglycemia, the stress 
hyperglycemia ratio (SHR), a value calculated by mathe-
matical modeling from immediate admission glucose and 
glycated hemoglobin (HbA1c) [21]. Nathan et al. devel-
oped an equation to convert HbA1c to estimated mean 
glucose, i.e., estimated mean glucose = (1.59 × HbA1c) 
− 2.59, which is widely used [22]. The SHR is calculated 
by dividing admission glucose by estimated mean glucose 
and is used to define stress hyperglycemia. When both 
admission glucose and SHR were included in multivari-
ate analyses, elevated relative glucose, as defined by the 
SHR, was independently associated with critical illness, 
whereas admission glucose was not. This finding was 
similar in patients with or without background hypergly-
cemia, and an increased risk of critical illness was identi-
fied in patients with relative hyperglycemia at a glucose 
concentration of < 10 mmol/L (180 mg/dL) [21]. This has 
been confirmed in follow-up studies, in which the SHR 
increased the area under the ROC curve of the Acute 
Physiology and Chronic Health Evaluation II (APACHE 
II) score [23, 24], and the relationship between the SHR 
and mortality was not affected by diabetes status [23]. 
Because admission glucose levels and HbA1c levels are 
widely available and the SHR is easy to calculate, the SHR 
is a good quantitative indicator of stress hyperglycemia 
and is widely used in predicting disease severity.

As research on the SHR has become more extensive, 
it has become apparent that the SHR plays an impor-
tant predictive role in many diseases, including cardio-
vascular diseases, cerebrovascular diseases, infectious 
diseases, and some other critical diseases [25–30]. A pre-
vious study revealed that the relationship between blood 
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glucose and mortality in patients with acute myocardial 
infarction was ‘J’ shaped, with an increase in mortality 
when blood glucose was less than 3.9 mmol/L (70  mg/
dL) [31]. With the progress of SHR research, the findings 
have been similar, with the relationship between the SHR 
and adverse disease outcomes being mostly ‘U’ shaped or 
‘J’ shaped#. However, the research value of the ‘U-shaped 
relationship’ between the SHR and adverse outcomes is 
also evident, with an increase in adverse outcomes when 
it reaches a low threshold [32, 33]. This paper reviews the 
mechanism of the SHR in acute and critical diseases and 
its clinical significance and summarizes the role and pre-
dictive value of the SHR in various diseases.

Mechanisms of occurrence
Stress response and glucose metabolism
In disease states, a combination of factors influences 
the development of stress hyperglycemia [1]. The stress 
response is a primary factor in this process, leading to a 
series of physiological changes through the activation of 
the sympathetic and endocrine systems. The secretion 

of stress hormones, including adrenaline, noradrenaline, 
and cortisol, is increased, and these hormones affect 
blood glucose levels through different mechanisms. 
During sympathetic overactivation, catecholamines 
reduce glucose uptake by peripheral tissues by inhibit-
ing insulin secretion and enhancing glycogenolysis and 
activating proinflammatory signaling pathways associ-
ated with hyperglycemia [34, 35]. Specifically, epineph-
rine and norepinephrine increase blood glucose levels 
by stimulating glycogen phosphorylase in the liver and 
muscle and accelerating glycogen degradation [36]. Fur-
thermore, cortisol has been demonstrated to exacerbate 
the hyperglycemic state by promoting hepatic gluco-
neogenesis through upregulating the expression of key 
enzymes of gluconeogenesis, such as phosphoenolpyru-
vate carboxykinase (PEPCK) and glucose-6-phosphatase 
(G6Pase) [37]. (Fig. 1A). The impact of these stress hor-
mones on insulin secretion is a key factor in the overall 
physiological response, with a decrease in insulin sensi-
tivity resulting in an increase in blood glucose.

Fig. 1  The mechanism between SIH and diseases. A In the disease state, the stress response, through the activation of the sympathetic nervous system 
and the endocrine system, causes an increase in the secretion of adrenaline, noradrenaline, cortisol, etc. Among them, adrenaline and noradrenaline can 
promote the breakdown of glycogen in the liver and muscles, releasing glucose into the blood. Cortisol will increase blood glucose levels by promoting 
gluconeogenesis in the liver. B Chronic stress can lead to insulin resistance by upregulating inflammatory factors and oxidative stress levels, resulting in 
post-receptor insulin signaling defects and downregulation of glucose transporter (GLUT). C Inflammatory factors such as tumor necrosis factor-α (TNF-
α), interleukin-6 (IL-6), NADPH oxidase-2 (NOX2), and NADPH oxidase-1 (NOX1) can disrupt the body’s metabolic pathways and interfere with the normal 
action of insulin, thereby promoting insulin resistance. Tumor necrosis factor-α (TNFα) may promote gluconeogenesis by stimulating the production 
of glucagon. D The U-shaped association between SHR and critically ill patients. Moderate SHR helps optimize cellular glucose uptake while avoiding 
hyperosmolar reactions. Low and high SHR levels are associated with more adverse disease outcomes and increased mortality. SIH: Stress-induced Hy-
perglycaemia, SHR: Stress Hyperglycaemia Ratio
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Insulin resistance
An important mechanism of stress hyperglycemia is 
insulin resistance [4], whereby prolonged stress leads 
to defective postreceptor insulin signaling [38] and the 
downregulation of glucose transporter proteins (GLUTs) 
[39] by increasing the levels of inflammatory factors 
and oxidative stress. Furthermore, the activation of the 
sympathetic nervous system has been demonstrated to 
increase the secretion of glucagon, catecholamines, cyto-
kines and cortisol [40, 41]. These mediators stimulate 
the hepatic release of glucose and mobilization of cir-
culating free fatty acids (FFAs) from adipose tissue, and 
the increase in FFAs not only causes a dose-dependent 
inhibition of glucose uptake and myoglycogen synthesis 
by FFAs [42] but also inhibits glucose entry into the cell 
through inhibition of glucose transport, leading to insulin 
resistance [43]. This, in turn, interferes with normal insu-
lin function. The diminished effectiveness of insulin aug-
ments the demand of the body for it, thereby increasing 
blood glucose levels. The resulting impairment in insulin 
signaling pathways is a well-documented phenomenon, 
with a strong association with the development of acute 
stress, particularly in critically ill patients. Addition-
ally, the impaired nonoxidative glucose processing may 
be attributable to reduced glycogen synthesis in skeletal 
muscle [44] (Fig. 1B).

Chronic inflammatory response
In certain acute and critical diseases (e.g., sepsis, acute 
myocardial infarction), the chronic inflammatory 
response of the body also has a significant effect on blood 
glucose levels [45]. Inflammatory factors such as tumor 
necrosis factor-α (TNF-α) [41], interleukin-6 (IL-6) [46], 
NAPDH oxidase-2 (NOX2), and NAPDH oxidase-1 
(NOX1) have been shown to disrupt metabolic pathways 
[47]. These factors can interfere with the normal action of 
insulin, promote insulin resistance, and lead to increased 
blood glucose levels. Furthermore, TNFα may promote 
gluconeogenesis by stimulating glucagon production [48] 
(Fig. 1C).

Mechanisms of the U-shaped associations between the 
SHR and outcomes in critically ill patients
Existing studies have demonstrated a ‘U-shaped’ rela-
tionship between the SHR and clinical outcomes in criti-
cally ill patients, suggesting that stress hyperglycemia 
has dual regulatory properties [32]. A number of clinical 
observations have demonstrated that mild to moderate 
stress hyperglycemia (blood glucose levels ranging from 
7.8 to 12.2 mmol/L [140 to 220 mg/dL]) has a significant 
protective effect during periods of acute stress, particu-
larly in cases of ischemic injury [32, 49] (Fig.  1D). The 
mechanisms by which this occurs may involve the fol-
lowing: First, moderately elevated blood glucose levels 

during ischemic conditions due to insufficient perfusion 
significantly increase the efficiency of glucose uptake 
by tissues by promoting GLUTs membrane localization 
and establishing a new glucose metabolic homeosta-
sis [49, 50]. Second, as shown in a rat model of myocar-
dial infarction, the upregulation of vascular endothelial 
growth factor (VEGF) and hypoxia-inducible factor-1α 
(HIF-1α) results in fewer apoptotic cells, reduced infarc-
tion size, and improved left ventricular systolic func-
tion [50]. Third, moderate osmolarity is maintained to 
avoid mitochondrial oxidative stress and overactivation 
of apoptotic signaling pathways triggered by extreme 
hyperglycemia [51]. Collectively, these findings lend sup-
port to the ‘physiological adaptation hypothesis’ of stress 
hyperglycemia, which states that the organism possesses 
the capacity to (i) meet the metabolic needs of tissues 
in energy crisis; (ii) activate endogenous cytoprotective 
mechanisms; and (iii) avoid glycotoxicity-induced dam-
age by finely regulating the blood glucose concentration 
in the critical state. Importantly, this protective effect is 
concentration dependent; when blood glucose exceeds a 
certain value, it leads to the conversion of the protective 
effect to damage [32, 49, 51].

Relationship to disease
Cardiovascular diseases
Coronary artery disease (CAD), particularly acute coro-
nary syndrome (ACS), remains the leading cause of death 
worldwide [52]. Stress hyperglycemia has been found 
to be independently associated with poor early and late 
prognoses in patients with ACS, especially those diag-
nosed with acute myocardial infarction (AMI) [53, 54]. 
This may be attributable to the fact that stress hypergly-
cemia exacerbates acute cardiac disease in several ways, 
including the exacerbation of microvascular obstruc-
tion [55], the attenuation of endothelium-dependent 
vasodilation [56], the impairment of platelet nitric oxide 
reactivity [57], and the facilitation of other mechanisms 
of vascular injury mediated by hyperglycemia. Conse-
quently, the SHR serves as a valuable indicator of stress 
hyperglycemia and a means to predict adverse out-
comes in CAD patients. A large cohort study from Asia 
revealed that the SHR was independently associated 
with short- and long-term major adverse cardiovascular 
events (MACEs) in ACS patients treated with drug-elut-
ing stent (DES) implantation in either a U- or J-shaped 
relationship, with a significant increase in the incidence 
of MACEs at an SHR > 0.78 [33]. Subsequent studies 
have obtained similar results, with elevated SHRs being 
independently associated with a poor long-term progno-
sis in ACS patients, regardless of diabetes status. These 
findings suggest that the SHR is a potential biomarker 
for risk stratification after ACS [58]. Although the SHR 
is an independent risk factor for ACS regardless of the 
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presence of diabetes mellitus, it has also been found 
that high SHR is more significantly associated with an 
increased risk of multivessel CAD than with an increased 
risk of single-vessel CAD, which may be related to the 
fact that multivessel CAD triggers severe inflammatory 
infiltration and endothelial dysfunction, leading to more 
severe glucose and lipid metabolism disturbances. There-
fore, the SHR seems to be a predictor of CAD severity 
[59]. The SHR has also been found to be more predictive 
in patients with prediabetes mellitus (pre-DM) and dia-
betes mellitus (DM) [59, 60]. To further confirm the pre-
dictive ability of SHR in ACS, a large number of studies 
have subsequently found that SHR is not only associated 
with the occurrence of short- and long-term MACEs in 
patients with AMI, including acute ST-segment eleva-
tion myocardial infarction (STEMI) and non-ST-segment 
elevation myocardial infarction (NSTEMI), and unstable 
angina pectoris, regardless of whether they undergo per-
cutaneous coronary intervention (PCI) or not [61–63]. 
Furthermore, the SHR has been identified as a superior 
biomarker of in-hospital mortality and morbidity [64] 
and a reliable predictor of the incidence of in-hospital 
cardiac arrest (IHCA) in patients with ACS treated with 
PCI [65]. The Global Registry of Acute Coronary Events 
(GRACE) score is a powerful tool for predicting in-hos-
pital mortality in ACS patients [66], and studies have 
shown that the SHR, but not the ABG, is an independent 
predictor of in-hospital mortality in AMI patients, even 
after adjusting for the GRACE score. The SHR improves 
the predictability and clinical utility of prognostic models 
that include the GRACE and Thrombolysis in Myocar-
dial Infarction (TIMI) STEMI score [61, 67]. Moreover, 
the SHR has been identified as a valuable predictor of 
adverse outcomes in patients with nonobstructive coro-
nary myocardial infarction (MINOCA) [68, 69], chronic 
total occlusion (CTO) [70], moderate-to-severe coronary 
calcification (MSCAC) [71], and coronary triple vascular 
disease (CTVD) [72]. The value of the SHR in the predic-
tion of adverse outcomes in patients with CAD is evident.

Heart failure (HF) is a clinical condition characterized 
by cardiac systolic and/or diastolic dysfunction, result-
ing in inadequate perfusion of peripheral organs and 
tissues [73]. Increasing evidence suggests that SIH may 
contribute to an important physiological mechanism for 
the decline in cardiac function in HF [1, 74] by exacerbat-
ing myocardial injury and dysfunction through oxidative 
stress, inflammatory responses, and vascular endothe-
lial dysfunction [75, 76]. A dramatic increase in plasma 
glucose levels triggers endothelial dysfunction, oxidative 
stress and inflammation [77] and activates coagulation 
[78]. These changes can lead to atherosclerosis [79] and 
cardiomyopathy [80], impairing myocardial contractility, 
promoting fluid retention, and exacerbating HF symp-
toms. Consequently, the utilization of the SHR for the 

timely identification of stress hyperglycemia is of para-
mount importance in the prognostication of HF. A meta-
analysis reported that SHRs above baseline levels were 
associated with a poor clinical prognosis in HF patients 
[81]. Building on these findings, Zhou et al. subsequently 
demonstrated a U-shaped association between SHR and 
all-cause death, cardiovascular death, and HF-related 
rehospitalization in diabetes patients with acute decom-
pensated heart failure (ADHF) [82]. The study indicated 
that both increased and decreased SHRs were associated 
with a poor long-term prognosis for both ADHF patients 
and persons with diabetes. In addition, subsequent stud-
ies have shown that an elevated SHR is independently 
associated with an increased risk of adverse outcomes 
in heart failure patients with a preserved ejection frac-
tion (HFpEF) compared with patients with a low SHR 
[83]. Additionally, the adverse effects of hyperglycemia 
on left ventricular (LV) remodeling and function increase 
the risk of HF in combination with a number of diseases, 
including AMI and heart valve disease [84]. Conse-
quently, the value of outcome prediction in HF patients 
via the SHR is well documented in clinical practice.

Atrial fibrillation (AF) represents a significant chal-
lenge within the domain of cardiovascular care, with its 
incidence exhibiting a consistent increasing trend [85]. 
Research has revealed a positive correlation between 
the SHR and all-cause mortality in critically ill patients 
with AF [86]. Furthermore, the SHR has been identified 
as a reliable predictor of certain complications associ-
ated with various diseases. For example, new-onset atrial 
fibrillation (NOAF) is a common complication in the 
acute phase of AMI, and studies have shown that the 
SHR is an independent predictor of NOAF after AMI, in 
addition to the neutrophil‒lymphocyte ratio (NLR) [87, 
88]. A cohort study also revealed that SHR in patients 
with severe aortic stenosis who underwent transcatheter 
aortic valve replacement (TAVR) was linearly associated 
with the risk of all-cause mortality, cardiovascular mor-
tality or readmission for heart failure, and MACEs and 
that patients with an SHR greater than 0.944 had a poorer 
prognosis than patients with lower SHRs [89]. Mean-
while, both the lowest and highest fasting SHRs were 
significantly associated with an increased incidence of 
contrast-induced acute kidney injury (CI-AKI) in those 
undergoing coronary angiography (CAG) or PCI [71]. 
Collectively, these factors can induce a series of delete-
rious changes within renal tissues, ultimately culminat-
ing in renal dysfunction and increased susceptibility to 
CI-AKI [90, 91]. Furthermore, an elevated SHR has been 
identified as a substantial predictive risk factor for the 
occurrence of ventricular arrhythmia (VA) in critically 
ill patients admitted to the intensive care unit (ICU) [92]. 
Similarly, in patients with cardiogenic shock (CS), stress 
hyperglycemia, as measured by the SHR, has been shown 
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to be a strong predictor of ICU mortality [93]. In cardiac 
ICU, a U-shaped association was observed between the 
SHR and short-term mortality in cardiac ICU patients 
[63].

In conclusion, the SHR is a significant predictor in the 
domain of cardiovascular medicine, playing a pivotal role 
in the diagnosis, treatment and prognosis of cardiovascu-
lar diseases. Given the critical nature of cardiac diseases, 
it is imperative to develop a comprehensive under-
standing of the correlation between SHR and clinical 
outcomes. These findings may facilitate the early identi-
fication of high-risk patients and inform the development 
of effective interventions to improve patient prognosis.

Cerebrovascular diseases
Stroke is defined as a disease in which damage to the 
cerebral vasculature occurs from a variety of causes, 
resulting in focal or overall damage to brain tissue [9]. It 
is the leading cause of death worldwide. Of these, acute 
ischemic stroke (AIS) accounts for 60–70% of all strokes 
[94], with high mortality and disability rates. Research 
has demonstrated that the metabolic status of patients at 
the time of admission is associated with the exacerbation 
of AIS [95], and persistent hyperglycemia is an indepen-
dent risk factor for infarct expansion [96]. SIH has been 
identified as a significant factor contributing to the exac-
erbation of stroke complications and the enhancement of 
unfavorable prognoses [97]. The mechanisms underly-
ing the prognostic association of stress hyperglycemia in 
patients with AIS have not been thoroughly investigated 
but may be related to the following mechanisms. SIH 
reflects greater disease severity and triggers a heightened 
inflammatory response, promoting neuroinflammation 
and vascular endothelial damage through released vas-
cular factors [1]. Acute glucose fluctuations exacerbate 
endothelial dysfunction and oxidative stress [98]. Addi-
tionally, anaerobic glucose metabolism in hyperglycemic 
conditions elevates lactic acid, causing cellular acido-
sis that accelerates brain injury [1]. Hyperglycemia also 
induces inflammation, oxidative stress, and matrix metal-
loproteinase-9 activation, disrupting the blood‒brain 
barrier and worsening cerebral edema [99, 100]. Finally, 
hyperglycemia enhances platelet activation, promoting 
abnormal aggregation that further aggravates the condi-
tion [26]. The SHR is associated with increased short- and 
long-term mortality in patients with AIS, independent of 
diabetes status [101, 102]. A meta-analysis encompass-
ing 11 cohort studies further suggested that an elevated 
SHR is associated with unfavorable outcomes in AIS 
patients and that the SHR may serve as a novel predictor 
of a poor prognosis in AIS patients [103]. Merlino et al. 
demonstrated that stress hyperglycemia was associated 
with a poor prognosis in patients with acute ischemic 
stroke following intravenous thrombolysis in a study of 

414 patients (excluding diabetes status) and that there 
was a significant trend in the quartiles of the SHR toward 
a poor prognosis and mortality [104]. Meanwhile, SHR 
was independently associated with mortality outcomes in 
patients with AIS treated with recombinant tissue plas-
minogen activator (rt-PA). This finding indicates that 
the SHR has a superior ability to predict other glucose 
indicators [105]. The presence of the SHR at admission 
has been demonstrated to be associated with an elevated 
risk of hemorrhagic conversion in patients with AIS [26]. 
Consequently, these studies have confirmed the prognos-
tic value of the SHR in patients with AIS.

Intracerebral hemorrhage (ICH) is the second most 
prevalent subtype of stroke, with a poor prognosis and 
high mortality rate, including a 30-day mortality rate of 
up to 40% [106]. Despite ongoing efforts, the number of 
effective treatments for ICH remains limited in compari-
son to those available for ischemic stroke [107]. Conse-
quently, early determination of ICH prognosis is highly 
important in clinical practice. A substantial body of pre-
vious research has indicated that stress hyperglycemia 
is associated with an elevated risk of death and an unfa-
vorable functional prognosis following ICH [14]. How-
ever, in most previous studies, stress hyperglycemia has 
been defined as absolute hyperglycemia on the basis of 
random or fasting blood glucose levels, without exclud-
ing the effect of chronic background hyperglycemia [14, 
108]. The SHR has been instrumental in enabling effec-
tive differentiation between SIH and diabetic hypergly-
cemia. A two-center prospective study and subsequent 
research have consistently shown that the SHR is strongly 
associated with hematoma enlargement, a poor progno-
sis, and in-hospital mortality in ICH patients, suggesting 
its potential as a useful adjunct indicator for in-hospital 
prognosis in cerebral hemorrhage patients [109, 110]. 
Additionally, the SHR has been identified as a predictor 
of ICU length of stay following minimally invasive sur-
gery (MIS) in ICH patients, offering clinicians a more 
precise understanding of recovery expectations [111].

Subarachnoid hemorrhage (SAH) resulting from the 
rupture of intracranial aneurysms, despite constituting a 
mere 5% of all stroke cases, is associated with a mortality 
rate that exceeds one-third within days to weeks follow-
ing the onset of symptoms [112]. A significant association 
was identified between the SHR and the incidence of a 
poor functional prognosis in patients with SAH, indepen-
dent of diabetes status [113], a finding that emphasizes 
the importance of the SHR as a prognostic indicator for 
SAH patients. Acute basilar artery occlusion (ABAO) is a 
rare but catastrophic type of stroke that accounts for 1% 
of all ischemic strokes, but approximately 68% of patients 
die or survive with severe disability [114]. Some studies 
have shown that the SHR is associated with a reduced 
likelihood of a good functional prognosis at 90 days and 
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1 year after endovascular therapy (EVT) in patients with 
ABAO [115]. Meanwhile, the SHR has been identified 
as an independent predictor of early neurological dete-
rioration (END) and an unfavorable prognosis in patients 
with a single subcortical infarct (SSI), particularly among 
elderly patients and those with a proximal SSI [116]. The 
findings of these studies underscore the clinical signifi-
cance of the SHR in cerebrovascular disease and provide 
significant insights that could inform the optimization of 
personalized risk assessment strategies, the guidance of 
targeted interventions, and the investigation of the opti-
mal blood glucose range in patients with cerebrovascular 
disease, as well as the formulation of targeted glucose-
lowering strategies.

Infectious diseases
Sepsis is defined as a life-threatening organ dysfunc-
tion syndrome triggered by a dysregulated host immune 
response to infection and is most commonly observed 
in patients with severe trauma or serious infections. Its 
pathophysiology is characterized by an uncontrolled sys-
temic inflammatory response, which often progresses 
to multiple organ dysfunction syndrome (MODS), with 
very high morbidity and mortality rates [117]. Sepsis is 
associated with an unacceptably high mortality rate of 
more than 35% at 90 days [118]. Consequently, research-
ers and clinicians are continually exploring the various 
factors that contribute to the outcomes of sepsis, with 
a particular focus on identifying markers and predic-
tors of mortality [119]. Early identification of high-risk 
patients susceptible to sepsis is imperative to prevent 
this condition and reduce the disease burden. SIH plays 
a significant role in sepsis, with some studies confirm-
ing the prognostic value of SIH in sepsis [120]. The 
mechanism may involve elevated blood glucose in SIH, 
which promotes monocyte/macrophage aggregation 
and the release of inflammatory cytokines (e.g., IL-6, 
IL-8), contributing to inflammation and tissue dam-
age [121]. Acute glucose spikes also impair endothelial 
function, potentially triggering abnormal coagulation 
and sepsis-associated disseminated intravascular coagu-
lation (DIC) [122]. Additionally, stress hyperglycemia 
increases mitochondrial ROS production in endothelial 
cells, worsening endothelial dysfunction [123]. Sepsis 
further aggravates hyperglycemia by activating the HPA 
axis, causing hormonal secretion and insulin suppres-
sion [124]. This sequence of events can result in a posi-
tive feedback loop, contributing to an increased risk of 
mortality in septic patients. Research has shown that 
the SHR has a U-shaped relationship with mortality in 
septic patients, where both low and high values predict 
worse outcomes, making it a potential prognostic marker 
for critically ill septic patients [125, 126]. When heart 
failure is combined with sepsis, there is sepsis-induced 

myocardial dysfunction and a systemic inflammatory 
response that exacerbates heart failure symptoms and 
increases the risk of adverse outcomes, and a cohort 
study found that the SHR was an independent prognos-
tic factor in patients with heart failure combined with 
sepsis [29]. This finding underscores the importance of 
the SHR in patients with sepsis, and monitoring the SHR 
could serve as a valuable way for clinicians to identify 
patients at high risk of sepsis and facilitate timely clinical 
interventions.

Pneumonia is one of the leading causes of morbidity 
and mortality worldwide. Hospital-acquired pneumo-
nia (HAP) is defined as inflammation of the lung paren-
chyma that does not exist and is not in the incubation 
phase of infection at the time of admission to the hos-
pital but occurs 48 h or more after admission [127]. The 
presence of SIH in hospitalized patients has been found 
to be strongly associated with an increased rate of infec-
tion [128, 129], thus underscoring the importance of the 
early recognition of SIH and glycemic control in reducing 
HAP. In 2023, Roberts et al. conducted a study of HAP, in 
which they defined SIH on admission by an SHR ≥ 1.1 as 
opposed to by conventional markers such as blood glu-
cose ≥ 10 mmol/L (180  mg/dL). Their findings revealed 
that the SHR was independently associated with subse-
quent episodes of HAP, whereas blood glucose was not 
[28]. Community-acquired pneumonia (CAP) is a sig-
nificant health concern for elderly individuals, with a 
mortality rate of 25–50% in severe community acquired 
pneumonia (SCAP) [130]. SIH has been demonstrated to 
result in impaired lung function, decreased oxygenation 
capacity, impeded infection control, and prolonged hos-
pitalization, leading to increased mortality [49]. A cohort 
study revealed that an elevated SHR, a well-recognized 
indicator of stress hyperglycemia, is a significant risk fac-
tor for death in elderly SCAP patients, irrespective of the 
presence of diabetes [131]. These findings underscore the 
pivotal role of the SHR in the prediction of pneumonia 
outcomes.

The novel coronavirus infection, otherwise known as 
coronavirus disease 2019 (COVID-19), is an acute infec-
tious disease caused by a novel coronavirus, namely, 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [132]. The bidirectional relationship between the 
two conditions has been well documented by previous 
studies. Diabetes mellitus has been shown to increase 
the risk of death in patients with novel coronavirus infec-
tion, while the novel coronavirus affects β-cells via the 
angiotensin-converting enzyme 2 (ACE2)-mediated 
pathway and leads to a surge in a variety of proinflam-
matory cytokines, resulting in transient hyperglycemia 
and new-onset diabetes. In some cases, this has been 
observed to progress to ketosis [133]. A study by Fadini 
et al. demonstrated that respiratory function deteriorated 
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Table 1  Predictive value of SHR in different diseases
Disease type Types of adverse outcomes Relation The threshold value 

for the occurrence of 
adverse outcomes

References

Cardiovascular disease
 CAD In-hospital death J-shaped > 1.2 Xu et al. [25]
 ACS MACE J-shaped > 0.78 Yang et al. [33]
 ACS In-hospital cardiac arrest J-shaped > 1.773 Li et al. [65]
 AMI NOAF -- > 1.119 Luo et al. [87]
 STEMI MACCE J-shaped > 1.2 Wei et al. [62]
 NSTEMI All-cause death -- > 1.53 (DM)

> 1.27 (Non-DM)
Sia et al. [34]

 Patients with AMI admitted to the ICU All-cause death J-shaped > 1.04 Liu et al. [54]
 MINOCA MACE -- > 0.86 Abdu et al. [69]
 CTVD Cardiovascular death J-shaped < 0.75 or > 1.0 Zhang et al. [60]
 MSCAC MACCE J-shaped > 0.83 Lin et al. [71]
 HF MACE -- > 1.05 Li et al. [81]
 ADHF All-cause death U-shaped < 0.64 or > 0.77 Zhou et al. [82]
 HFpEF All-cause deaths, cardiovascular 

deaths and HF readmission
U-shaped < 0.74 or > 0.98 Mohammed et 

al. [83]
 CS ICU mortality rate U-shaped < 0.953 or > 1.668 Tian et al. [93]
 AF All-cause death U-shaped > 0.73 Cheng et al. [86]
 Critically ill patients admitted to the ICU VA J-shaped > 1.31 Shen et al. [92]
 Cardiac ICU Short-term mortality U-shaped < 0.75 or > 0.95 Li et al. [63]
Cerebrovascular diseases
 AIS All-cause death J-shaped > 1.02 Zhang et al. [102]
 ICH In-hospital deaths and hematoma 

expansion
-- > 1.26 Zhang et al. [109]

 SAH Use of the mRS is rated on a scale 
of 3 to 6

J-shaped > 1.59 Yang et al. [113]

 ABAO Adverse Functional Outcomes at 
90 Days and 1 Year After EVT

-- > 1.37 Peng et al. [115]

 SSI Early deterioration of END -- > 1.11 Liu et al. [116]
Infectious diseases
 COVID-19 In-hospital death -- > 1.14 Mondal et al. 

[135]
 CAP All-cause death -- > 1.2 Miao et al. [131]
 HAP Incidence rate -- > 1.1 Roberts et al. [28]
 Sepsis One-year all-cause mortality rate U-shaped < 0.75 or > 0.99 Li et al. [126]
 HF complicated with sepsis All-cause death U-shaped < 0.7 or > 1.08 Song et al. [29]
Other
 DM or pre-DM All-cause mortality J-shaped > 0.93 Ding et al. [134]
 Esophagectomy was performed for EC 30/90 day all-cause deaths -- > 1.14 Xia et al. [138]
 CKD One-year all-cause U-shaped < 0.7 or > 0.95 An et al. [142]
 IPAH Long-term adverse outcomes J-shaped -- Zhang et al. [140]
 Psoriasis All-cause mortality U-shaped > 1.045 Tuersun et al. 

[141]
 Critical illness Death and transfer to the ICU J-shaped > 1.14 Roberts et al. [21]
 Critical illness All-cause death U-shaped < 0.75 or > 0.96 Li et al. [32]
CAD: Coronary artery disease, ACS: Acute coronary syndrome, AMI: Acute Myocardial Infarction, MACE: Major adverse cardiovascular events, MACCE: Major Adverse 
Cardiovascular and Cerebrovascular Events, NOAF: New- onset atrial fibrillation, STEMI: ST-segment elevation myocardial infarction, NSTEMI: Non-ST-segment 
elevation myocardial infarction, ICU: Intensive care units, MINOCA: Moderate-to-severe coronary calcification, CTVD: Coronary triple vascular disease, MSCAC: 
Moderate-to-severe coronary calcification, HF: Heart failure, ADHF: Acute decompensated heart failure, HFpEF: Heart failure patients with a preserved ejection 
fraction, CS: Cardiogenic Shock, AF: Atrial fibrillation, VA: Ventricular arrhythmia, AIS: Acute ischemic stroke, ICH: Intracerebral hemorrhage, SAH: Subarachnoid 
hemorrhage, mRS: modified Rankin Scale, ABAO: Acute basilar artery occlusion, EVT: Endovascular therapy, SSI: Single subcortical infarct, END: Early neurological 
deterioration, COVID-19: Coronavirus disease 2019, CAP: Community-acquired pneumonia, HAP: Hospital-acquired pneumonia, DM: Diabetes mellitus, pre-DM: 
Prediabetes mellitus, Non-DM: Non-Diabetes mellitus, EC: Esophageal cancer, CKD: Chronic kidney disease, IPAH: Idiopathic pulmonary arterial hypertension
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rapidly in patients with newly diagnosed diabetes and/or 
hyperglycemia on admission and that patients with con-
firmed cases of COVID-19 had a worse prognosis than 
patients with known diabetes did [134]. And SHR may be 
a more appropriate biomarker for predicting poor prog-
nosis in patients with moderate to severe COVID-19. For 
example, a cohort study showed that SHR was a better 
predictor of mortality and poor prognosis in COVID-19 
patients than ABG, regardless of prior chronic glycaemic 
status [135]. Acute pancreatitis (AP) is an autodigestive 
disease of the pancreatic tissue caused by the abnormal 
activation of pancreatic enzymes and potentially trigger-
ing dysfunction of other organs [136]. Numerous studies 
have indicated that stress hyperglycemia may be associ-
ated with an elevated risk of morbidity and mortality in 
patients with acute pancreatitis [27]. Bacteremia is a seri-
ous condition caused by the presence of an active infec-
tious agent in the body [137], and hospitalized patients 
with bacteremia suffering from transient stress hyper-
glycemia are at a greater risk of subsequently developing 
diabetes mellitus than those with normal blood glucose 
[30]. Consequently, the critical impact of the SHR on 
clinical outcomes as an important predictor of poten-
tially altered infectious disease outcomes emphasizes its 
importance in disease prognosis prediction. The effective 
management of SHRs through rigorous glycemic control 
and meticulous monitoring has the potential to improve 
the prognosis of patients afflicted by infectious diseases.

Others
In addition to the preceding discussion of the pivotal 
function of the SHR in cardiovascular, cerebrovascular, 
and infectious diseases, a number of studies have identi-
fied the SHR as a key player in other diseases. For exam-
ple, a study by Xia et al. revealed that among patients 
admitted to the intensive care unit for serious complica-
tions after esophagectomy for esophageal cancer (EC), 
relative elevations in blood glucose quantified by the 
SHR were associated with 30/90-day all-cause mortal-
ity, whereas absolute hyperglycemia was not, and an 
SHR ≥ 1.14 could be used to identify people at increased 
risk of a poor prognosis, especially diabetes [138]. Song et 
al. reported that both lower and higher SHRs were asso-
ciated with an increased risk of delirium in older hos-
pitalized patients and that the SHR may be a promising 
marker for identifying patients at a greater risk of delir-
ium [139]. Other studies in SHR have shown significant 
associations with idiopathic pulmonary arterial hyper-
tension (IPAH), risk of death in patients with psoriasis 
(optimal threshold 1.045) and poor prognosis in patients 
with DM, pre-DM, acute kidney injury (AKI) and chronic 
kidney disease (CKD) [71, 140–143].

Conclusion
Stress responses, including stress hyperglycemia, have 
been observed in humans during periods of stress. These 
responses are primarily mediated by the hypothalamic‒
pituitary‒adrenal axis and the sympathoadrenal system 
[49]. A substantial body of research has demonstrated 
that mild to moderate stress hyperglycemia functions as a 
protective factor during periods of stress, particularly in 
cases of ischemia. For example, in animal models, stress 
hyperglycemia has been shown to increase cardiac out-
put and improve survival [33]. Furthermore, in ischemic 
cells, moderate stress hyperglycemia has been shown to 
promote more efficient glucose utilization [50]. The SHR, 
a well-recognized indicator of stress hyperglycemia, has 
also been extensively documented in its U- and J-shaped 
relationship with numerous critical illnesses [49]. Admis-
sion glucose levels and HbA1c tests are widely avail-
able, and the SHR is easily calculable (The relationship 
between various diseases and SHR is summarised in 
Table  1). Consequently, the SHR is more valuable than 
glucose levels alone in predicting critical illness and is 
widely used [20, 109, 135]. However, it is important to 
note that HbA1c levels can be affected by various fac-
tors, including underlying conditions such as alcohol-
ism, iron deficiency anemia, and hyperlipidemia. These 
conditions can lead to elevated HbA1c test values [144, 
145]. Conversely, patients suffering from hemolytic ane-
mia, those with chronic renal failure or pregnant women 
with an increased blood volume may exhibit low HbA1c 
values [146, 147]. Consequently, in the presence of these 
diseases, consideration should be given to the potential 
for bias in the calculation of HbA1c, which may be influ-
enced by inaccurate data.

In principle, the regulation of the SHR at a specific 
level through insulin therapy could offer significant ben-
efits for a wide range of diseases. However, this hypoth-
esis has not been substantiated, and one study reported 
that insulin basal therapy did not reduce mortality after 
AMI [148]. One potential explanation for this find-
ing is that stress hyperglycemia is an epiphenomenon 
of pancreatic β-cell dysfunction, adrenergic and renin-
angiotensin-aldosterone system (RAAS) overactivity, 
hyperglucagonemia, and increased saturated fatty acids 
[149]. Conversely, the risk of hypoglycemia induced by 
the use of intensive glucose-lowering therapy can lead to 
acute glycemic variability, which has been demonstrated 
to have deleterious effects on prognosis, including long-
term effects on cardiovascular outcomes. Consequently, 
ensuring the maintenance of blood glucose within a safe 
range while concomitantly ameliorating adverse out-
comes by diminishing short-term glycemic variability 
due to hypoglycemic risk is imperative [47]. Therefore, 
in addition to insulin therapy, the current use of multi-
target therapeutic regimens may be a better option for 
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controlling stress hyperglycemia. For example, gluca-
gon-like peptide-1 receptor agonists (GLP-1RAs) and 
sodium‒glucose cotransporter 2 inhibitors (SGLT2is) 
have been demonstrated to possess cardioprotective 
properties without the risk of hypoglycemia [45, 47]. 
However, studies related to GLP-1RAs or SGLT2is in the 
treatment of SIH are scarce, and whether their potential 
side effects (e.g., SGLT2i-induced infections and ketoaci-
dosis, glucagon-like peptide-1-associated delayed gastric 
emptying, and the risk of pulmonary aspiration) have an 
impact on adverse outcomes remains to be elucidated. 
Further studies are needed to determine the safety pro-
file. We look forward to the emergence of large controlled 
studies in the future to confirm the role of the SHR in 
treatment. Although there is a lack of valid arguments 
for the precise treatment of stress hyperglycemia, accu-
rate identification of patients with stress hyperglycemia 
is clinically important for clinicians to judge the progno-
sis of the disease. The SHR may help to differentiate true 
blood glucose elevation, which is of clinical interest for 
assisting clinicians in deciding whether to start glucose-
lowering therapy.
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